



# Development of In Situ Instruments for Planetary Exploration – Unique Challenges in Design, Development, and Execution

Dr. Timothy Krabach
Dr. Patricia Beauchamp

Life Detection Science & Technology
Program Office
Jet Propulsion Laboratory



## **Acknowledgments**



- Dave Rogers
- Susanne Douglas
- And the 50+ PI and co-I at JPL and parntering institutions in the ASTID, ASTEP, and PPP programs that have worked with the LD S&T office



### In Situ Instrumentation



- Enabling the planetary science community to be ready for Flagship Astrobiology missions of the next decade
  - Mars Astrobiology Field Laboratory
  - Europa Pathfinder Lander
  - Titan Organic Explorer

 Prepare the capabilities for New Frontiers missions (e.g. Venus, comet sample return, deep probes) and Discovery missions







# Space In Situ Instrumentation still in its Infancy

- Remote sensing has been operational for decades
- Viking was first planetary mission to use in situ instruments in 1976.
   Hiatus of 21 years before Pathfinder in 1997
- Dearth of instrumentation was remedied somewhat by PIDDP, MIDP, ASTID and ASTEP
- In situ analysis complicated because answering specific science questions requires specific technologies suited to specific extreme environment
- Instrumentation may be based on photon sources, electron sources, mass spectrometry, wet chemical techniques, etc.
- Process to develop in situ instrumentation is long, complicated and requires high degree of system architecting and engineering
- Testing must be done in the field and on the mission platform as well as in the expected environment
- Must look at end-to-end instrumentation, including sample acquisition and handling, sample preparation, IT, control etc.

In Situ Sample Analysis is where remote sensing instrumentation was in the 1970's





# **Planetary Extremes**







# **Planetary Extremes**





### **Mars Surface Environment**







- Driven by landing site latitude (10°N to 15°S), time of year (L<sub>S</sub> = 328 at BOM, L<sub>S</sub> = 30 at EOM), ground albedo (0.12 to 0.25) and inertia (rock distribution), dust level (Tau = 0.2) in atmosphere & elevation (-1.3km, MOLA)
- Global Circulation Model predicts ground, atmosphere & sky temps, solar insolation during day
- Wind speeds from Viking data (0 to 20 m/sec)



### Lunar Precursor Mission Environment



- Analyze a large scale Lunar survey/assay mission in the permanently dark
   S. Polar Cap craters:
- Key environmental drivers include:
  - 40K temperature in shadowed areas is challenge for any type of actuation/thermal control;
  - While surface rock population is not significant, crater impact frequency is extremely large and represents major hazard to landing/mobility systems;
  - 1/6g gravity has impact on surface system stability;
  - Radiant heating in lit areas can cause huge temperature deltas in structures/components;
  - Lunar dust mostly silica which exhibits properties similar to splintered glass;
  - Lunar vacuum coupled with temp extremes rqrs unique approach to selection of actuators (brushless) and lubricant;



Likely target- Shackleton Crater @ 90deg S. Polar Cap





 Smooth, mantled surface with fractures: are the properties of Europa's regolith similar to those of compacted snow?



Page 9



## Europa Surface Analogue



#### Europa's surface:

- Is it fluffy?
- Is it crunchy?
- Is it bare solid ice?

#### Answer:

- a. All of the above
- b. We don't really know.

Our lander must be able to survive no matter what the correct answer turns out to be.





#### **Other Parameters**



■ Temperatures: Daytime ~ 130 K

nighttime ~ 80 K

■ Ambient Radiation: ~ 20 Rad /sec

Atmosphere: Negligible

Rotation Period: 3.55 Earth days

■ Radius: 1565 km

■ Surface Gravity: ~1.3 m / sec 2 (82% of Lunar g)



# Life Cycles of Remote Sensing compared to In Situ

# \_\_ 'L

# Instrumentation: Remote Sensing





# Life Cycles of Remote Sensing compared to In Situ Instrumentation:In Situ









# Needed Capabilities For In Situ Science

- Astrobiology science definitions and investigations
- In situ instrument concept, research, and development
- Access methods and sample collection / handling / processing techniques
- Planetary protection methodology





# California Institute of Technolo Framework For Putting The Pieces Together







## The Wild World of Astrobiology

### Astrobiology and In Situ Exploration is a contact sport!

Researchers have been "spanning the globe" in pursuit of answering key scientific and technical questions



Page 16





#### **Timeline**

- Long timeline for creation of in situ investigations for NASA planetary missions
  - Establish in situ / astrobiology science community
    - Geology community has come a long way
    - Biology community lagging
  - Creation of accepted definitions and methods of in situ investigations needed
    - Lack of models of performance, calibration, ands system engineering practices

For Flagship Missions in the 2015 – 2020 Time Frame, Science Team and Instrument Development is NOW





### **Example: MOD**

- Mars Organic Detector (MOD) aka UREY
  - System to detect and analyze organic compounds in the Martian Environment with high sensitivity and specificity
- Collaboration with JPL (Frank Grunthaner), UCSD (Jeff Bada), and Richard Mathies (UCB)
  - Working together over nine years
  - Collaboration has used funding from ASTID, ASTEP (2), PIDDP, MSMT, RTD, AEMC, Grand Challenge
- All leading to proposal for UREY payload on EXOMARS
  - Selected by ESA, now looking for selection as a Mission of Opportunity



# In Situ Sample Analysis Laboratories are more complex





Laboratory



# In Situ Sample Analysis Requires Integration of Many Emerging Advanced Concepts



- Micro fabrication of traditional analytical tools
- Advanced sensor concepts, including biologically inspired
- Advanced transducer concepts
- Advanced micro scale sample handling & preparation technologies
- Micro fabrication of supporting technologies such as pumps
- Replenish/recycle expendables using in situ resources
- Integration

June 29, 2006



Micro column separator (Purdue)

500-nm micro wells on tip of fiber probe with chemical sensor beads (Tufts)





Micro fluidic system (Caliper, Inc.)<sub>age 20</sub>



## National Aeronautics and Spa Jet Propulsion Laboratory California Institute of Tech Supporting technologies for In Situ Laboratories



- Microfluidic technologies
- Miniature vacuum pumps
- Visible, IR and UV Sensors
- Advanced miniature fabrication technologies
  - Micro-machining
- Advanced Photonics development lasers
- Advanced diffractive optics
- Sample acquisition and handling
  - Acoustic coring
  - Drilling (rock and ice)





### Micro-laboratory example



Page 22







### **Distance of operation:**

- "Local Remote": meters to cm range working range
- "Contact": cm to micron working range
- "Analytical": Sample acquired, processed, and analyzed inside of laboratory
- — ⇒ The first two categories require little to no sample or surface preparation a major advantage for rapid assay operations, mass-limited platforms, or for triage in selection of samples for further study or collection
  - Contact Instrument Examples include
    - Microscopy
    - •Raman (Visible, UV, IR; wide area or microbeam)
    - •Electron Probe, Alpha probe
    - •LIBS
    - •Reflectance optical spectroscopy (UV, visible, IR, polarization)
    - •Magnetic resonance
    - Neutron Spectroscopy



### In Situ Instrument Classes



### Measurement Types

- Detection/Classification/Identification of Chemical/Elemental species
  - Mass spectroscopies
  - Chromatography systems
  - X-ray diffraction / Florescence
  - Optical Spectroscopies (Absorption, Raman, Luminescence, etc)
  - Nuclear Magnetic Resonance
  - Almost every other currently available chemical assay is under some stage of development
- Biological Detection / Identification
  - ATP and QD tagging
  - DPA detection
- Spatial Detection Methods
  - Optical Microscopy
  - CT X-ray imaging
  - Soft X-ray Photoemissions



# **Key for Analytical Instrument: Sample Preparation**



- Analytical in situ instruments rely on acquiring and preparing a sample
- Necessity to develop sample preparation and extraction techniques that
  - Offer high efficiency
  - Do NOT bias the measurements to be taken with downstream instruments
  - Offer robust operation often the limiting factor in lifetime
  - Avoid cross contamination
  - Provide Multiple samples/extracts to instrument suite
  - Operate in reduced gravity conditions

#### Techniques

- Pyrolysis
- Sublimation
- Polishing
- Supercritical CO2 extraction
- Subcritical H20 extraction



## **Summary**



- In Situ instruments are a unique for NASA missions lessons from remote sensing often don't apply
- Development of In Situ System Engineering methods is a work in progress
- Defining, integrating and testing of space in situ
   laboratories is currently more art than engineering
- •The power of in situ methods, demonstrated in the lab, is advancing rapidly, offering measurements and science investigations not thought possible